Azole resistance in Candida glabrata: coordinate upregulation of multidrug transporters and evidence for a Pdr1-like transcription factor.

نویسندگان

  • John-Paul Vermitsky
  • Thomas D Edlind
چکیده

Candida glabrata has emerged as a common cause of fungal infection. This yeast has intrinsically low susceptibility to azole antifungals such as fluconazole, and mutation to frank azole resistance during treatment has been documented. Potential resistance mechanisms include changes in expression or sequence of ERG11 encoding the azole target. Alternatively, resistance could result from upregulated expression of multidrug transporter genes; in C. glabrata these include CDR1 and PDH1. By RNA hybridization, 10 of 12 azole-resistant clinical isolates showed 6- to 15-fold upregulation of CDR1 compared to susceptible strains. In 4 of these 10 isolates PDH1 was similarly upregulated, and in the remainder it was upregulated three- to fivefold, while ERG11 expression was minimally changed. Laboratory mutants were selected on fluconazole-containing medium with glycerol as carbon source (to eliminate mitochondrial mutants). Similar to the clinical isolates, six of seven laboratory mutants showed unchanged ERG11 expression but coordinate CDR1-PDH1 upregulation ranging from 2- to 20-fold. Effects of antifungal treatment on gene expression in susceptible C. glabrata strains were also studied: azole exposure induced CDR1-PDH1 expression 4- to 12-fold. These findings suggest that these transporter genes are regulated by a common mechanism. In support of this, a mutation associated with laboratory resistance was identified in the C. glabrata homolog of PDR1 which encodes a regulator of multidrug transporter genes in Saccharomyces cerevisiae. The mutation falls within a putative activation domain and was associated with PDR1 autoupregulation. Additional regulatory factors remain to be identified, as indicated by the lack of PDR1 mutation in a clinical isolate with coordinately upregulated CDR1-PDH1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Upregulation of the Adhesin Gene EPA1 Mediated by PDR1 in Candida glabrata Leads to Enhanced Host Colonization

Candida glabrata is the second most common Candida species causing disseminated infection, after C. albicans. C. glabrata is intrinsically less susceptible to the widely used azole antifungal drugs and quickly develops secondary resistance. Resistance typically relies on drug efflux with transporters regulated by the transcription factor Pdr1. Gain-of-function (GOF) mutations in PDR1 lead to a ...

متن کامل

Comparative Genomics of Two Sequential Candida glabrata Clinical Isolates

Candida glabrata is an important fungal pathogen which develops rapid antifungal resistance in treated patients. It is known that azole treatments lead to antifungal resistance in this fungal species and that multidrug efflux transporters are involved in this process. Specific mutations in the transcriptional regulator PDR1 result in upregulation of the transporters. In addition, we showed that...

متن کامل

Jjj1 Is a Negative Regulator of Pdr1-Mediated Fluconazole Resistance in Candida glabrata

The high prevalence of fluconazole resistance among clinical isolates of Candida glabrata has greatly hampered the utility of fluconazole for the treatment of invasive candidiasis. Fluconazole resistance in this yeast is almost exclusively due to activating mutations in the transcription factor Pdr1, which result in upregulation of the ABC transporter genes CDR1, PDH1, and SNQ2 and therefore in...

متن کامل

Contribution of CgPDR1-Regulated Genes in Enhanced Virulence of Azole-Resistant Candida glabrata

In Candida glabrata, the transcription factor CgPdr1 is involved in resistance to azole antifungals via upregulation of ATP binding cassette (ABC)-transporter genes including at least CgCDR1, CgCDR2 and CgSNQ2. A high diversity of GOF (gain-of-function) mutations in CgPDR1 exists for the upregulation of ABC-transporters. These mutations enhance C. glabrata virulence in animal models, thus indic...

متن کامل

Candida glabrata PDR1, a transcriptional regulator of a pleiotropic drug resistance network, mediates azole resistance in clinical isolates and petite mutants.

Candida glabrata, a yeast with intrinsically low susceptibility to azoles, frequently develops increased azole resistance during prolonged treatment. Transposon mutagenesis revealed that disruption of CgPDR1 resulted in an 8- to 16-fold increase in fluconazole susceptibility of C. glabrata. CgPDR1 is a homolog of Saccharomyces cerevisiae PDR1, which encodes a transcriptional regulator of multid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Antimicrobial agents and chemotherapy

دوره 48 10  شماره 

صفحات  -

تاریخ انتشار 2004